Полевой В.В. Физиология целостности растительного организма // Физиология растений. 2001. Т. 48, № 4. С. 631-643.

Прозина М.Н. Ботаническая микротехника. М.: Высш. шк., 1960. 254 с.

Степанов С.А., Даштоян Ю.В. Качественные аспекты анатомо-морфологической организации зародыша зерновки яровой пшеницы // Бюл. Бот. сада Сарат. гос. ун-та. Вып. 3. Саратов: Науч. кн., 2004. С. 149–158.

Степанов С.А., Коробко В.В., Даштоян Ю.В. Трансформация межметамерных отношений в онтогенезе побега пшеницы // Изв. СГУ. Сер. Химия. Биология. Экология. 2005. Т. 5, вып. 2. С. 33–36.

Степанов С.А. Проблема целостности растения на современном этапе развития биологии // Изв. СГУ. Сер. Химия. Биология. Экология. 2008. Т. 8, вып. 2. С. 50-57.

Aloni R. Regeneration of Phloem fibres round a Wound: a new experimental system for studyng the Physiology of fibre Differentiation // Ann. Bot. 1976. Vol. 40, № 166. P. 395–396.

Wilbur F.H., *Riopel J.L.* The role of cell interaction in the growth and differentiation of Pelargonium hortorum cells in vitro. 1. Cell interaction and growth // Bot. Gaz. 1971. Vol. 132, № 3. P. 183–193.

УДК 581.143.21

РОСТ И РАЗВИТИЕ КОНУСА НАРАСТАНИЯ ПОБЕГА В ВЕГЕТАТИВНЫЙ ПЕРИОД ОРГАНОГЕНЕЗА ЯРОВОЙ ПШЕНИЦЫ

С.А. Степанов, Е.К. Щеглова

Саратовский государственный университет им. Н.Г. Чернышевского 410012, Саратов, ул. Астраханская, 83; e-mail: stepanovsa@info.sgu.ru

Изучались особенности роста и развития конуса нарастания побега яровой мягкой пшеницы на примере нескольких генотипов в вегетативный период органогенеза. Выявлено различие генотипов по продолжительности пластохронов, абсолютной и относительной скорости роста конуса нарастания.

Ключевые слова: генотип, пластохрон, конус нарастания, скорость роста.

Органогенная деятельность конуса нарастания эмбрионального побега с момента прорастания зерновки проявляется в виде комплекса функциональных изменений, определяемых как пластохронные, связанные с вычленением отдельных зачаточных метамеров, и онтогенетические, представленные его последовательным ростом и развитием (Серебрякова, 1971; Kirby, 1977). Предполагается, что одним из средств селекции сортов пшеницы является поиск форм с интенсивно функционирующими меристемами, включая конус нарастания побега (Морозова и др., 2009). Сравнительному анализу в этом аспекте сортов, созданных в разные годы в НИИСХ Юго-Востока, отличающихся по некоторым онтогенетическим, морфологическим параметрам, и посвящена данная работа.

Материал и методика

Исследования роста и развития конуса нарастания главного побега проводились: 1) на сортах среднеспелых (длинностебельный – Саратовская 36, короткостебельный – Нададорес 63, сорт с укороченный соломиной, полученный от скрещивания предыдущих сортов, – Саратовская 52); 2) на скороспелых сортах (длинностебельный – Краснокутка 7, короткостебельный – Уорлд Сидз 1616). При изучении пшеницы основные наблюдения и учеты в течение 6 лет проводились в полевых мелкоделяночных опытах на полях пристанционного селекционного севооборота НИИСХ Юго-Востока по соответствующим методикам, представленным ранее (Степанов и др., 1990). Статистическую обработку результатов исследований проводили с использованием программы Excel Windows 2000.

Результаты и их обсуждение

Продолжительность роста конуса нарастания и вычленения им метамеров вегетативной части побега в среднем за 6 лет исследования составила от 18 до 23 дней с момента посева семян, что зависело от генетических особенностей сортов и условий года. Наибольшая продолжительность отмечена у инорайонного короткостебельного среднеспелого сорта Нададорес 63, наименьшая — у ультраскороспелого короткостебельного, также инорайонного, сорта Уорлд Сидз 1616. В годы с высоким фоном положительных температур с момента прорастания продолжительность вегетативного периода была короче у всех сортов. Однако сопоставление продолжительности роста конуса нарастания, образования им вегетативных метамеров и среднесуточных температур в различные годы приводит нас к представлению о дифференциальной чувствительности сортов яровой пшеницы в отношении температурного фактора, отражающегося на темпах роста конуса, общей продолжительности заложения метамеров.

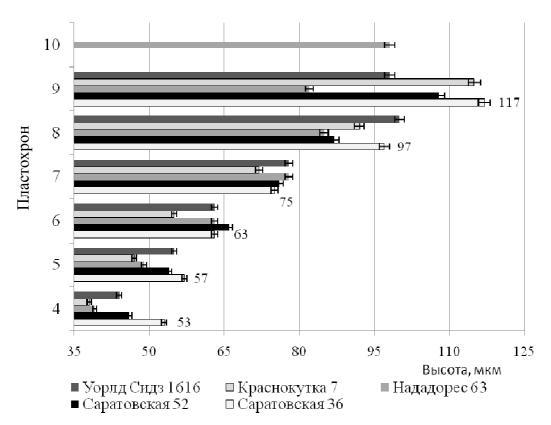
За вегетативную фазу к уже имеющимся в зародышах зерновок 3–4 листовым зачаткам (Степанов и др., 2008) закладывалось еще от 4 до 9 листовых примордиев, что зависело от сортовых особенностей и условий года. Общее число вегетативных метамеров к концу вегетативной фазы составляло от 8 до 12 штук. При этом средняя продолжительность пластохронов, специфичная для каждого из сортов, постепенно сокращается от 108–156 ч для 4-го метамера до 12 ч у 9–11-го метамеров побега. В годы с

умеренным перепадом положительных температур в течение вегетативного периода пластохрон был более коротким у всех сортов. Проведенный нами анализ продолжительности отдельных пластохронных циклов исследуемых сортов позволил выявить, что у сортов, имеющих в зародыше три метамера, в течение некоторого времени с момента посева завершается третий пластохрон, и продолжительность следующего, четвертого пластохрона может быть в результате несколько большей.

Саратовская 36, имея, как правило, четыре метамера эмбрионального побега главной зародышевой почки, проявляет преимущество по темпам формирования метамеров конусом нарастания на старте вегетации в сравнении с сортами, имеющими стабильно три метамера в зародыше зерновки – Нададорес 63, Краснокутка 7.

Таким образом, в одних и тех же условиях вегетации могут наблюдаться сортовые различия по продолжительности пластохронов одноименных метамеров побега пшеницы. Наряду с прямым действием температурного фактора на меристематические клетки конуса нарастания, возможно, его действие может проявляться также посредством изменения трофических взаимодействий между разновозрастными метамерами, между ассимилирующими листьями и апексом побега или в виде информационного сигнала, поступающего от более зрелых структур проростка пшеницы к конусу нарастания побега. В качестве физической основы подобного информационного сигнала могут выступать биоэлектрические потенциалы (Пятыгин и др., 2006, 2008).

Периодическая инициация новых метамеров, коррелирующая с определенным фенофазным состоянием проростка, проявляется в течение всего вегетативного периода ростом конуса нарастания в продольной и радиальных осях относительно верхушки побега. Доминирующей тенденцией, однако, является рост по вектору продольной оси конуса.


Анализ линейных размеров конуса нарастания в течение нескольких пластохронов вегетативного периода развития позволил установить, что наибольшее возрастание его высоты и ширины при условии одноименного пластохрона наблюдается по отношению к его ранней фазе (табл. 1).

Отмечены сортовые различия по степени возрастания размеров конуса к концу вегетативного периода. Среди скороспелых сортов наибольшее возрастание высоты конуса (как в раннюю, так и в позднюю фазу пластохрона) обнаружено для Краснокутки 7. Среди остальной группы сортов большее возрастание высоты конуса в раннюю фазу пластохронов выявлены для Нададорес 63 и Саратовской 52, в позднюю фазу — для Саратовской 36. Различие по степени возрастания ширины конуса между сортами этой группы, за некоторым исключением, было менее существенным (см. табл. 1).

Таблица 1. Возрастание размеров конуса нарастания к концу вегетативного периода (от размеров конуса в 4-м пластохроне к максимальной его величине последних пластохронов), среднее за 6 лет

Показатель	Фаза пластохрона	Сорт						
		Саратов- ская 36	Саратов- ская 52	Нададо- рес 63	Красно- кутка 7	Уорлд Сидз 1616		
Высота	Розгияя	2,24	2,50	2,54	3,00	2,45		
Ширина	Ранняя	1,48	1,55	1,56	1,45	1,51		
Высота	Поряцая	1,61	1,48	1,30	1,91	1,44		
Ширина	Поздняя	1,25	1,07	1,14	1,14	1,08		

Возрастание абсолютных размеров конуса, его высоты и ширины, происходит последовательно, от пластохрона к пластохрону, при этом в ряду отдельных пластохронов могут наблюдаться сортовые различия по вышеназванным признакам (рисунок).

Высота конуса нарастания побега в ранней фазе пластохронов

По завершении своего роста к концу отдельно взятого пластохрона, формируя очередной метамер, конус нарастания приобретает некоторое приращение, величина которого способствует, в совокупности с последующими приращениями, ускорению темпов завершения вегетативного

периода. Величина приращения конуса нарастания в высоту, наиболее существенная, как было выявлено нами, в ранней фазе пластохронов, имеет сортовую специфичность (табл. 2).

Таблица 2. Прирост в высоту конуса нарастания побега в ранней фазе пластохронов относительно предыдущего пластохрона (в % от средних значений высоты конуса за 6 лет)

Cont	Номер пластохрона							
Сорт	5	6	7	8	9	10		
Саратовская 36	8	10	19	29	21	-		
Саратовская 52	17	22	15	14	24	-		
Нададорес	26	29	24	9	0	20***		
Краснокутка 7	24	17	31	19	25	-		
Уорлд Сидз 1616	25	14	24	28	0**			

Примечание: ** – среднее за четыре года; *** – среднее за пять лет.

В то же время обращает на себя внимание тот факт, что абсолютные значения прироста от ранней фазы к поздней в течение 4–5 пластохронов, то есть в период гетеротрофного питания проростков, являются относительно стабильными, тогда как в последующем, на фоне автотрофного питания, величина указанного признака претерпевает изменения (табл. 3).

Таблица 3. Прирост конуса нарастания побега яровой пшеницы в высоту от ранней к поздней фазе пластохрона, в мкм (от средних значений высоты конуса за 6 лет)

Cont	Номер пластохрона							
Сорт	5	6	7	8	9	10		
Саратовская 36	45	45	56	66	61	-		
Саратовская 52	55	59	49	64	62	-		
Нададорес	58	58	55	60	41	42***		
Краснокутка 7	45	49	53	69	67	-		
Уорлд Сидз 1616	52	52	51	60	14**	-		

Примечание: ** – среднее за четыре года; *** – среднее за пять лет.

В среднем длина зачаточного метамера составляет от 30 до 50 мкм; отдельные метамеры имели длину до 60–70 мкм. По длине отдельных зачаточных метамеров может наблюдаться небольшое, существенно значимое ($p \le 0.05$) различие между сортами яровой пшеницы (табл. 4).

Таблица 4. Длина зачаточных метамеров побега яровой пшеницы, мкм

Сорт	Пластохронный цикл								
Сорт	4	5	6	7	8	9	10		
Сухой год									
Саратовская 36	43±2	50±5	38±5	44±3	41±3	45±3	-		
Саратовская 52	37±3	46±4	44 <u>±</u> 4	50±3	40±3*	63±3*,**	-		
Нададорес	57±4**	49±6	46 <u>±</u> 4	44±3	51±3**	41±2*	47 <u>±</u> 4		
Уорлд Сидз 1616	40 <u>±</u> 4	45±3	51±4	57±3	53±3	-	-		
Влажный год									
Саратовская 36	36±3	38±3	45±2	50±4	49±4	44±5	-		
Саратовская 52	32±1	37±1*	52±1*,**	45±4	52±6	34±3*	-		
Нададорес 63	33±1	44±6	52±4	41±2*	69±8*,**	36±6*	40±5		
Краснокутка 7	59±4**,***	39±2*,***	49±1*,***	49±2***	54±2***	48±2*	69±4*		
Уорлд Сидз 1616	33±3	46±2*,**	41±3	41±3	44±4	54±4	-		

Примечание: * $-p \le 0.05$ относительно предыдущего пластохрона; ** $-p \le 0.05$ относительно Саратовской 36; *** $-p \le 0.05$ относительно Уорлд Сидз 1616.

В ходе роста конуса нарастания, как результат суммарного прироста меристемы в продольном и радиальном направлениях, последовательно изменяется его форма. В течение вегетативного периода его форма в ранней фазе пластохронов, по нашим наблюдениям, меняется от куполовидной до удлиненной, в поздней фазе — от удлиненной до вытянутой. Отмечена сортоспецифичность в проявлении данного признака формы конуса.

По завершении формирования метамеров вегетативной зоны побега конус нарастания в ранней фазе соответствующего пластохрона возрастает: в высоту – в 2,2–3,0 раза, в ширину – 1,5–1,6 раза. К концу вегетативного периода отношение высоты конуса к его ширине становится равным 0,8–1,2.

По мнению ряда авторов (Christ, 1978; Niklas, Mauseth, 1980), наиболее полное представление о динамике роста конуса нарастания побега возможно на основе определения его абсолютной и относительной скорости роста, отражающей биоэнергетические возможности мембранных структур клеток. Для исследуемых нами сортов пшеницы характерно возрастание абсолютной скорости роста от пластохрона к пластохрону, ее уменьшение в условиях кратковременного понижения температуры и, наоборот, увеличение скорости роста конуса в случае повышенной положительной температуры воздуха. В частности, для Саратовской 36 в условиях вегетации 1986 г. абсолютная скорость роста конуса в течение 4-го пластохрона со-

ставила 3,38 мкм/день, 5-го пластохрона — 12,25 мкм/день, 6-го пластохрона — 40,5 мкм/день, 7-го пластохрона — существенно меньше, чем в предыдущем, 19,6 мкм/день; подобная тенденция свойственна и другим исследуемым сортам, но с иными значениями абсолютной скорости роста конуса в каждый из пластохронов.

В среднем за 6 лет исследований максимальные значения абсолютной скорости роста конуса нарастания побега наблюдались: 4-й пластохрон — Уорлд Сидз 1616, 5-й пластохрон — Саратовская 52, 6-й пластохрон — Краснокутка 7, 7-й пластохрон — Уорлд Сидз 1616, 8-й пластохрон — Краснокутка 7. Минимальные значения абсолютной скорости роста конуса за этот же период были свойственны: 4-й пластохрон — Саратовская 36, 5-й пластохрон — Саратовская 36, 7-й пластохрон — Нададорес 63, 8-й пластохрон — Уорлд Сидз 1616.

Следует заключить, что большие значения абсолютной скорости роста конуса нарастания в течение вегетативного периода органогенеза преимущественно присущи скороспелым сортам, Уорлд Сидз 1616 и Краснокутка 7. Условия вегетации различно сказываются на скорости роста конуса нарастания в течение одноименных пластохронов сортов яровой пшеницы, способствуя дифференциации сортов по продолжительности органогенных циклов и числу формирующихся метамеров.

Если развитие проростка с момента посева продолжительное время идет при пониженной температуре, то скорость роста конуса длительное время имеет низкие значения. В этом случае эффект пониженной скорости роста определяется, вероятно, не только прямым действием температуры на меристемы апекса и растущих листьев, но также в результате постепенного истощения запасов эндосперма и слабой еще готовности проростка к автотрофному питанию. Следовало ожидать, что в одних условиях вегетации различия сортов по скорости роста конуса нарастания побега, присущие сортам эндогенно, будут нивелироваться, в других – проявляться более рельефно. Анализируя с этих позиций кривые относительной скорости роста конуса в условиях засушливого года, следует отметить, что если вначале некоторое преимущество имели короткостебельные инорайонные сорта (и скороспелый Уорлд Сидз 1616, и среднеспелый Нададорес 63), то в последующем, при резком повышении температуры воздуха, мы наблюдаем повышенную скорость роста конуса лишь у Уорлд Сидз 1616 и Саратовской 52, обеспечивающую им и быстрейшее завершение формирования метамеров вегетативной части побега. В условиях достаточно благоприятного, влажного года относительная скорость роста конуса нарастания побега Краснокутки 7 существенно отличалась от предшествующих лет, в то время как скорость роста конусов нарастания Уорлд Сидз 1616, Саратовской 52 и Нададорес 63 превышала вначале рост конуса нарастания у Саратовской 36. Некоторое время скорость роста конуса нарастания Нададорес 63 превышает скорость роста конуса нарастания всех сортов, кроме Краснокутки 7, однако в дальнейшем, на 14-й день, Краснокутка 7 и Саратовская 36 превосходят все остальные сорта. Резкое похолодание в последующем приводит к значительному торможению относительной скорости роста конусов нарастания побегов у всех сортов.

Таким образом, можно заключить, что хотя реакция всех сортов на понижение или повышение температуры является в какой-то степени однотипной, однако короткостебельные сорта и сорта скороспелые проявляют большую относительную скорость роста конусов нарастания в начале вегетации. В дальнейшем развитии проростка характер роста конуса, вероятно, будет определяться сбалансированностью ростовых и фотоассимиляционных процессов и донорно-акцепторных отношений. Немалую роль в этот период должна играть площадь развернувшихся листьев и их зрелость. Одни сорта избегают дальнейшего дисбаланса между этими составляющими гомеостаза растения за счет сокращения числа метамеров — Уорлд Сидз 1616, а в отдельные годы и Саратовская 52, другие, испытывая некоторый период угнетения роста конуса нарастания побега, замещают недостаточную ассимиляционную поверхность за счет заложения дополнительного числа метамеров.

Учитывая зависимость между активностью фотосинтетических процессов и интенсивностью морфогенеза растений (Мокроносов, 1983), следует расширить, на наш взгляд, поиск сортов, отличающихся ускоренной пролиферацией клеток конуса нарастания и его размерами в отдельные фазы пластохрона, величиной приращения в течение вегетативного периода онтогенеза в конкретных условиях вегетации.

Список литературы

Мокроносов А.Т. Интеграция функций роста и фотосинтеза // Физиология растений. 1983. Т. 30, вып. 5. С. 368–380.

Морозова З.А., Мурашев В.В. Род *Triticum* L. Морфогенез видов пшеницы. М., 2009. 232 с.

Пятыгин С.С., Воденеев В.А., Опритов В.А. Деполяризация плазматической мембраны как универсальная первичная биоэлектрическая реакция растительных клеток на действие различных факторов // Успехи современной биологии. 2006. Т. 126, № 5. С. 493–502.

Пятыгин С.С., Опритов В.А., Воденеев В.А. Сигнальная роль потенциала действия у высших растений // Физиология растений. 2008. Т. 55, № 2. С. 312–319.

 $\it Cеребрякова~T.И.$ Морфогенез побегов и эволюция жизненных форм злаков. М., 1971. 357 с.

Степанов С.А., Мостовая Л.А. Оценка продуктивности сорта по первичному органогенезу побега пшеницы // Продукционный процесс, его моделирование и полевой контроль. Саратов, 1990. С. 151-155.

Степанов С.А., Танайлова Е.А., Горюнов А.А. Развитие листьев зародыша зерновок яровой пшеницы // Вестн. СГАУ. 2008. № 8. С. 29–32.

Christ R.A. Growth and rate of the leaves Triticum // J. Exp. Bot. 1978. Vol. 29, N_{\odot} 110. P. 610–618.

Kirby E.J.M. The growth of the shoot apex and the apical dome of barley during ear initiation // Ann. Bot. 1977. Vol. 41. P. 1297–1308.

Niclas K.Y., Mauseth J.D. Simulations of cell dimensions in shoot apical meristems: implications concerning zonate apices // Amer. J. Bot. 1980. Vol. 67, N_{2} 5. P. 715–732.