СРАВНИТЕЛЬНЫЙ АНАЛИЗ КАРИОТИПОВ БЛИЗКОРОДСТВЕННЫХ ВИДОВ РОДА ОСТРОЛОДОЧНИК (*OXYTROPIS* DC.)

Л.Р. Арсланова, Н.А. Калашник

Ботанический сад-институт Уфимского научного центра РАН 450080, Уфа, ул. Полярная, 8; e-mail: cyto.ufa@mail.ru

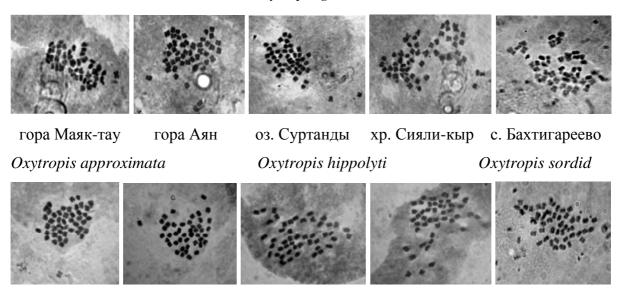
Проведено кариологическое исследование четырех видов рода Oxytropis DC.: O. gmelinii Fisch. ex Boriss., O. approximata Less., O. hippolyti Boriss., O. sordida (Willd.) Pers. из природных популяций Южного Урала. Установлено, что число хромосом у исследованных видов 2n = 48; для O. gmelinii и O. hippolyti характерны хромосомы метацентрического и субметацентрического типов, для O. approximata и O. sordida — только метацентрического типа. Наблюдаемые у исследованных объектов межвидовые и межпопуляционные сходства и различия по длине хромосом, изменчивости их морфометрических параметров и структуре кариотипов свидетельствуют в пользу их близкого родства.

Ключевые слова: *Охутторіѕ* DC., число хромосом, структура кариотипа, популяционная изменчивость, Южный Урал.

На Урале произрастают 9–10 видов рода *Oxytropis* DC. (Васильченко, 1987; Яковлев, 1996), из которых 5 видов считаются редкими и занесены в Красную книгу Республики Башкортостан (2001). К ним относится, в частности, *O. gmelinii Fisch*. ex Boriss. Кроме того, некоторые виды уральских остролодочников являются эндемиками, например *O. approximata* Less., *O. hippolyti* Boriss. *O. sordida* (Willd.) Pers. – вид с неопределенным статусом, который предполагается занести в Красную книгу Республики Башкортостан.

В данной работе представлены результаты кариологических исследований видов O. gmelinii, O. approximata, O. hippolyti и O. sordida.

По мнению некоторых авторов (Горчаковский, 1963; Князев, 2001б), O. gmelinii Fisch. ex Boriss., O. approximata Less. и O. hippolyti Boriss. связаны тесными узами родства друг с другом и с аркто-высокогорным O. sordida.


Материал и методика

Для кариологических исследований были использованы семена образцов растений, собранных в разных районах Республики Башкортостан: *О. gmelinii* (Кугарчинский район, гора Маяк-тау; Абзелиловский район, го-

ра Аян и озеро Суртанды; Баймакский район, с. Бахтигареево; Учалинский район, хребет Сияли-кыр), *О. approximata* (Учалинский район, с. Старомуйнаково), *О. hippolyti* (Давлекановский район, оз. Аслы-куль; Буздякский район, с. Канлы-Туркеево и с. Усмановский), *O. sordida* (Белорецкий район, хребет Машак). В качестве материала использовали меристематическую ткань корешков проростков (Паушева, 1980). Материал изучали с использованием масляной иммерсии, используя микроскоп БИМАМ-Р13 (х1120). Анализировали не менее 20–25 метафазных пластинок из каждой популяции.

На рис. 1 представлены микрофотографии метафазных пластинок исследуемых видов. В результате исследований определяли число хромосом, морфометрические параметры хромосом, типы хромосом, согласно классификации В.Г. Грифа, Н.Д. Агаповой (1986), также составляли идиограммы кариотипов для популяций исследуемых видов.

Oxytropis gmelinii

с. Старомуйна- оз. Аслы-куль с. Канлы-Туркеево с. Усмановский хр. Машак ково

Рис. 1. Микрофотографии метафазных пластинок видов рода *Oxytropis* DC. из различных популяций. Увеличение: объектив x100, окуляр x7, фотонасадка x1,6

Статистическая обработка данных выполнена по методике Г.Н. Зайцева (1973). Степень варьирования изучаемых признаков определяли с помощью коэффициентов вариации по шкале уровней изменчивости: очень низкий (C_v <7%), низкий (C_v =8–12%), средний (C_v =13–20%), повышенный (C_v =21–30%), высокий (C_v =31–40%) и очень высокий (C_v >40%), разработанной С.А. Мамаевым (1973). Оценку достоверности различий между популяциями видов рода *Охуtropis* DC. по кариологическим показателям

проводили с помощью дисперсионного анализа (критерия наименьшей значимой разности). Для систематизации объектов в пакете программ Statistica 6.0 были использованы методы многомерного статистического анализа: древовидная кластеризация (метод одиночной связи) и дискриминантный анализ.

Результаты и их обсуждение

Oxytropis gmelinii. Для O. gmelinii установлено, что у исследованных популяций соматическое число хромосом 2n = 48, хромосомы метацентрического (Ic > 40%) типа, кроме популяции хр. Сияли-кыр, у которой представлены хромосомы как метацентрического, так и субметацентрического (30 < Ic < 40%) типов. Размеры хромосом в популяции горы Маяк-тау варьируют в пределах от 1.88±0.19 мкм до 2.84±0.26 мкм, горы Аян - от 1.88 ± 0.15 мкм до 2.80 ± 0.22 мкм, хр. Сияли-кыр – от 1.88 ± 0.08 мкм до 2.73±0.15 мкм; оз. Суртанды – от 1.92±0.15 мкм до 2.79±0.28 мкм, с. Бахтигареево – от 1.84±0.15 мкм до 2.74±0.16 мкм. Во всех популяциях по абсолютной и относительной длине хромосом в основном наблюдаются очень низкий и низкий коэффициенты вариации, а по значению центромерного индекса хромосом – очень низкий, низкий и средний. Средняя суммарная длина диплоидного набора хромосом в популяции горы Маяк-тау составляет 112.44±7.53 мкм, горы Аян – 112.37±6.20 мкм, хр. Сияли-кыр – 110.20±4.33 мкм, оз. Суртанды – 107.16±8.83 мкм, с. Бахтигареево – 109.95±5.90 мкм; коэффициент вариации во всех популяциях очень низкий или низкий ($C_v = 6.70\%$, $C_v = 5.52\%$, $C_v = 3.93\%$, $C_v = 8.24\%$, $C_v = 5.37\%$ соответственно).

Oxytropis approximata. Установлено, что у исследованной популяции *O. approximata* соматическое число хромосом 2n=48, хромосомы метацентрического (Ic > 40%) типа. Размеры хромосом в популяции варьируют в пределах от 1.86±0.21 мкм до 2.89±0.26 мкм.

По абсолютной длине хромосом наблюдаются очень низкий (по 3, 4, 12–14-й парам) и низкий коэффициенты вариации (по остальным парам), по относительной длине хромосом – очень низкий коэффициент вариации, кроме 24-й пары (низкий коэффициент вариации), а по значению центромерного индекса хромосом – очень низкий (по 11, 13 и 14-й парам), низкий (по 1–10, 12, 15–19, 23, 24-й парам) и средний (по 20–22-й парам). Средняя суммарная длина диплоидного набора хромосом в популяции составляет 111.38 ± 6.76 мкм; коэффициент вариации очень низкий ($C_v = 6.07\%$).

Oxytropis hippolyti. У *O. hippolyti* исследованных популяций соматическое число хромосом 2n = 48, хромосомы метацентрического (Ic > 40%) типа, кроме популяции с. Усмановский, где обнаружены хромосомы как

метацентрического, так и субметацентрического (30 < Ic < 40%) типов. Размеры хромосом в популяции оз. Аслы-куль варьируют в пределах от 1.87±0.16 мкм до 2.82±0.22 мкм; с. Канлы-Туркеево – от 1.86±0.12 мкм до 2.79±0.28 мкм, с. Усмановский – от 1.77±0.19 мкм до 2.70±0.17 мкм.

Во всех популяциях по абсолютной и относительной длине хромосом наблюдаются очень низкий и низкий коэффициенты вариации, а по значению центромерного индекса хромосом — очень низкий, низкий и средний. Средняя суммарная длина диплоидного набора хромосом в популяции оз. Аслы-куль составляет 111.48 \pm 6.51 мкм, с. Канлы-Туркеево — 110.40 \pm 7.59 мкм, с. Усмановский — 106.93 \pm 4.07 мкм; коэффициент вариации во всех популяциях очень низкий (C_v =5.84%, C_v =6.87%, C_v =3.80% соответственно).

Oxytropis sordida. Для *O. sordida* установлено, что в популяции, про- израстающей на хр. Машак, соматическое число хромосом 2n = 48, хромосомы метацентрического (Ic > 40%) типа. Размеры хромосом варьируют в пределах от 1.70 ± 0.20 мкм до 2.69 ± 0.27 мкм.

По абсолютной длине хромосом наблюдаются низкий (по 1–3, 6–12, 22–24-й парам) и средний (по 4, 5, 13–21-й парам) коэффициенты вариации, по относительной длине – очень низкий, кроме 15, 16 и 17-й пар хромосом, по которым наблюдается низкий коэффициент вариации. По значению центромерного индекса отмечаются очень низкий (по 3-й паре), низкий (по 1, 2, 4–11, 18, 19, 22–24-й парам) и средний (по 12–17-й парам) коэффициенты вариации. Средняя суммарная длина диплоидного набора хромосом в данной популяции 101.64 ± 11.42 мкм, коэффициент вариации низкий ($C_v = 11.24\%$).

Таким образом, у всех исследованных видов соматическое число хромосом 2n = 48. Полученные данные по числу хромосом исследованных видов совпадают с результатами, приведенными некоторыми авторами для Урала (Лавренко и др., 1990; Филлипов и др., 1998).

На рис. 2 представлены идиограммы кариотипов видов рода *Oxytropis* DC. из различных популяций.

Сравнение исследованных популяций по морфометрическим показателям хромосом, а также по суммарной длине диплоидного набора с помощью критерия наименьшей значимой разности выявило различия между популяциями по одним показателям и сходство по другим.

Так, у *O. gmelinii* по абсолютной длине хромосом наблюдаются статистически значимые различия при сравнении всех исследованных популяций с популяцией оз. Суртанды (с. Бахтигареево и оз. Суртанды – по 15, 17 и 18-й парам, горы Маяк-тау и оз. Суртанды – по 14–17-й парам, горы Аян и оз. Суртанды – по 7, 13–16, 18 и 19-й парам, хр. Сияли-кыр и оз. Суртанды – по 15–17-й парам). По относительной длине хромосом между по-

Oxytropis gmelinii

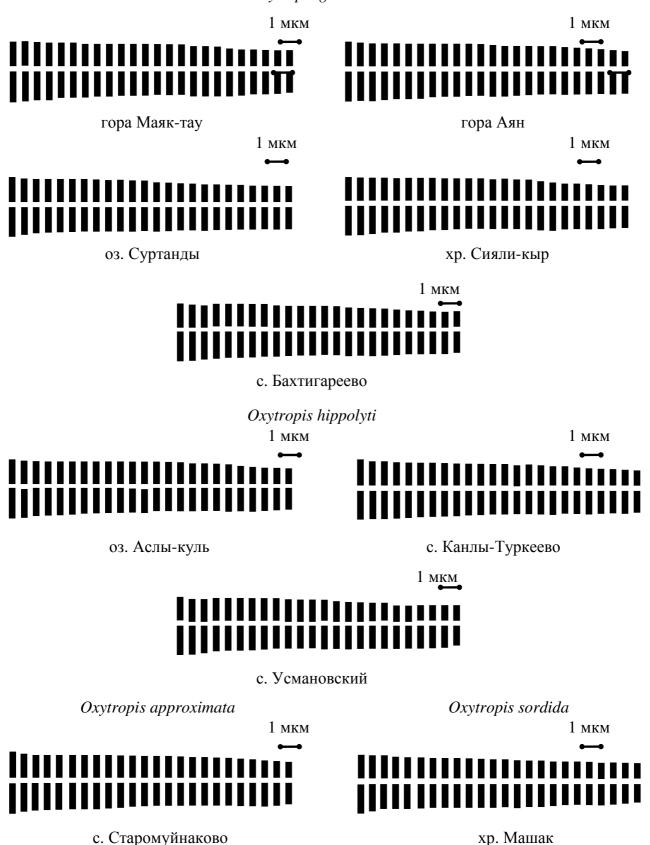


Рис. 2. Идиограммы кариотипов видов рода Oxytropis DC. из различных популяций

пуляциями наблюдаются различия по следующим парам хромосом: горы Маяк-тау и с. Бахтигареево – по 3 и 8-й парам, с. Бахтигареево и оз. Суртанды – по 11, 15, 17 и 24-й парам, горы Маяк-тау и оз. Суртанды – по 3, 4, 8, 10, 11, 15–18, 23 и 24-й парам, гор Маяк-тау и Аян – по 7 и 18-й парам, горы Маяк-тау и хр. Сияли-кыр – по 4-й паре, горы Аян и оз. Суртанды – по 24-й паре, хр. Сияли-кыр и оз. Суртанды – по 1, 10, 11, 15–18, 23 и 24-й парам, горы Аян и хр. Сияли-кыр – по 16 и 17-й парам. По значению центромерного индекса различия наблюдаются между популяциями по следующим парам хромосом: с. Бахтигареево и оз. Суртанды – по 3 и 13-й парам, горы Маяк-тау и оз. Суртанды – по 4, 7, 13 и 15-й парам, гор Маяк-тау и Аян – по 6, 19 и 20-й парам, горы Аян и оз. Суртанды – по 3–7, 17 и 18-й парам, хр. Сияли-кыр и оз. Суртанды – по 3, 11, 13 и 14-й парам, хр. Сияли-кыр и горы Аян – по 13, 14, 18, 21 и 22-й парам. По суммарной длине хромосом значимые различия наблюдаются между следующими популяциями: горы Маяк-тау и оз. Суртанды, горы Аян и оз. Суртанды.

У О. hippolyti по абсолютной длине хромосом статистически значимые различия наблюдаются между популяциями по нескольким соответствующим парам: оз. Аслы-куль и с. Канлы-Туркеево – по 19-й паре, оз. Аслы-куль и с. Усмановский – по 5, 9, 18–22, 24-й парам, с. Канлы-Туркеево и с. Усмановский – по 4 и 5-й парам. По относительной длине различия наблюдаются между следующими популяциями: оз. Аслы-куль и с. Канлы-Туркеево – по 3 и 19-й парам, оз. Аслы-куль и с. Усмановский – 2 и 19-й парам. По значению центромерного индекса различия наблюдаются между следующими популяциями: оз. Аслы-куль и с. Канлы-Туркеево – по 1-й паре, оз. Аслы-куль и с. Усмановский – по 9 и 19-й парам, с. Канлы-Туркеево и с. Усмановский – по 1, 9, 10, 12-й парам. По суммарной длине хромосом значимые различия наблюдаются только между популяциями оз. Аслы-куль и с. Усмановский.

Как отмечалось ранее, по мнению некоторых авторов (Горчаковский, 1963, Князев, 2001б), популяции *O. gmelinii, O. approximata* и *O. hippolyti* связаны тесными узами родства друг с другом и с аркто-высокогорным *O. sordida*. В связи с этим нами была предпринята попытка определить с помощью методов многомерного анализа (дискриминантный и кластерный анализ) степень сходства популяций перечисленных видов друг с другом по кариологическим признакам.

В результате проведенного дискриминантного анализа с пошаговым включением переменных по морфологическим параметрам хромосом *O. gmelinii, O. approximata, O. hippolyti* и *O. sordida* было выявлено, что максимальный вклад в разделение групп вносят абсолютная и относительная длина хромосом, при этом более показательной оказалась абсолютная длина хромосом (λ Уилкса = 0.963, F = 1720.663, p < 0.0001) по сравнению

с относительной (λ Уилкса = 0.901, F = 1609.861, p < 0.0001). Из трех кадостоверной оказалась только первая (γ^2 = нонических переменных = 993.0, p < 0.0001), описывающая 68.4% межгрупповой дисперсии. Наибольшие стандартизированные коэффициенты для канонической функции 1 имеют показатели: абсолютная (123.5) и относительная длина хромосом (135.5). Степень различия между популяциями оценивалась при помощи расстояния Махаланобиса, отражающего удаленность центроидов выборок в многомерном пространстве канонических переменных. Значения квадратов расстояния Махаланобиса между исследуемыми популяциями оказались статистически значимыми (p < 0.05), кроме следующих популяций: хр. Сияли-кыр – с. Бахтигареево, горы Аян – Маяк-тау, с. Усмановский – оз. Суртанды, хр. Сияли-кыр – с. Канлы-Туркеево, оз. Аслы-куль – с. Старомуйнаково.

В результате кластерного анализа была получена дендрограмма различия – сходства популяций видов рода *Охутгоріs* DC. по четырем кариотипическим параметрам – абсолютной, относительной и суммарной длине хромосом, а также центромерному индексу (рис. 3). Из полученной дендрограммы видно, что наиболее близки следующие популяции: горы Маяк-тау и Аян, оз. Аслы-куль и с. Старомуйнаково (расстояние 0.2), хр. Сияли-кыр и с. Канлы-Туркеево (расстояние 0.3), оз. Суртанды и с. Усмановский (расстояние 0.4).

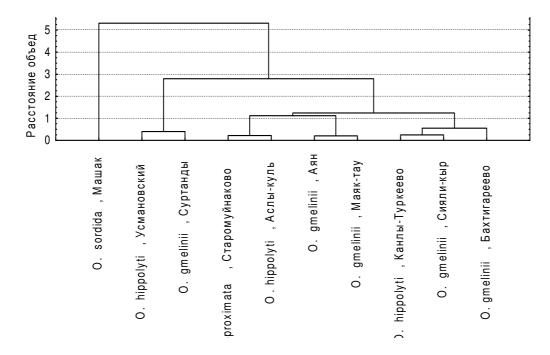


Рис. 3. Дендрограмма сходства—различия популяций близкородственных видов рода *Oxytropis* DC.: *O. gmelinii*, *O. hippolyti*, *O. approximata* и *O. sordida* по кариотипическим параметрам (абсолютной, относительной и суммарной длине хромосом, а также центромерному индексу)

Таким образом, по кариотипическим признакам наиболее близкими оказались как популяции одного вида (горы Аян – Маяк-тау, хр. Сияли-кыр – с. Бахтигареево), так и популяции разных видов (с. Усмановский – оз. Суртанды, оз. Аслы-куль – с. Старомуйнаково, хр. Сияли-кыр – с. Канлы-Туркеево). Хотя популяция хр. Машак наиболее далека от остальных популяций, тем не менее и у нее наблюдается сходство с остальными изученными популяциями по числу и размерам хромосом, а также по структуре хромосомного набора. Наблюдаемые у исследованных объектов межвидовые и межпопуляционные сходства по некоторым кариотипическим показателям, вероятно, свидетельствуют в пользу их близкого родства.

По результатам проведенных исследований можно сделать следующие выводы.

- 1. У всех исследованных видов соматическое число хромосом 2n = 48. Для *O. gmelinii* и *O. hippolytii* характерны хромосомы метацентрического и субметацентрического типов, для *O. approximata* и *O. sordida* только метацентрического типа.
- 2. У исследованных видов наблюдаются как различия, так и сходства по морфометрическим параметрам хромосом между отдельными парами и суммарной длине диплоидного набора. Уровень изменчивости по этим по-казателям очень низкий, низкий и средний.
- 3. Максимальный вклад в дифференциацию видов и популяций вносят абсолютная и относительная длины хромосом. По четырем кариотипическим параметрам наиболее близкими оказались следующие популяции: горы Маяк-тау и Аян, оз. Аслы-куль и с. Старомуйнаково, хр. Сияли-кыр и с. Канлы-Туркеево, оз. Суртанды и с. Усмановский.
- 4. Полученные результаты исследования *O. gmelinii, O. approximata, O. hippolyti* и *O. sordida* свидетельствуют в пользу близкого родства этих видов.

Список литературы

Васильченко И.Т. Род Остролодочник – *Oxytropis* DC. // Флора европейской части СССР. Л., 1987. Т. 6. С. 169.

Горчаковский П.Л. Эндемичные и реликтовые элементы во флоре Урала и их происхождение // Материалы по истории флоры и растительности СССР. М.; Л., 1963. С. 285–375.

Гриф В.Г., Агапова Н.Д. К методике описания кариотипов растений // Бот. журн. 1986. Т. 71, № 4. С. 550–553.

Зайцев Γ .Н. Методика биометрических расчетов. Математическая статистика в экспериментальной ботанике. М., 1973. 256 с.

Князев М.С. Заметки по систематике и хорологии видов рода *Oxytropis* (*Fabaceae*) на Урале. III: Виды родства *Oxytropis campestris* // Бот. журн. 2001б. Т. 86, № 1. С. 79-87.

Красная книга Республики Башкортостан. Т.1: Редкие и исчезающие виды высших сосудистых растений. Уфа, 2001. 237 с.

Лавренко А.Н, Сердитов Н.П., Улле З.Г. Числа хромосом некоторых видов цветковых растений Урала (Коми АССР)//Бот. журн. 1990. Т. 75, № 11. С. 1622–1624.

Мамаев С.А. Формы внутривидовой изменчивости древесных растений (на примере семейства Pinaceae на Урале). М., 1973. 284 с.

Паушева З.П. Практикум по цитологии растений. М., 1980. 304 с.

Филиппов Е.Г., Куликов П.В., Князев М.С. Числа хромосом видов рода *Охуtropis* (Fabaceae) на Урале // Бот. журн. 1998. Т. 83, № 6. С. 138–139.

Яковлев Г.П. Бобовые земного шара. Л., 1991. 144 с.

УДК 576.353:58.037

УГАСАНИЕ ЭФФЕКТА СТИМУЛЯЦИИ МИТОТИЧЕСКОЙ АКТИВНОСТИ МЕРИСТЕМ ПРИ УВЕЛИЧЕНИИ СРОКОВ ХРАНЕНИЯ СУХИХ СЕМЯН ПОСЛЕ ЭКСПОЗИЦИИ В НИЗКОЧАСТОТНОМ МАГНИТНОМ ПОЛЕ

Ю.А. Беляченко, А.Д. Усанов, В.С. Тырнов, Д.А. Усанов

Саратовский государственный университет им. Н.Г.Чернышевского 410012, Саратов, ул. Астраханская, 83; e-mail: julismirnova@yahoo.com

После воздействия магнитного поля с частотой 6 Гц и индукцией 25 мТл в течение 1 часа на сухие семена сорго, кукурузы, подсолнечника и укропа наблюдается повышение митотической активности апикальных корневых меристем проростков. Отмечено проявление этого эффекта при хранении сухих семян в течение 3 суток после воздействия. Этот эффект угасает и исчезает при более длительном хранении.

Ключевые слова: магнитное поле, митотическая активность, стимулирующий эффект, корневые меристемы.

Проведен цикл работ, направленный на исследование влияния низкочастотного магнитного поля (МП) на различные виды однодольных и двудольных растений (Тырнов и др., 2004; Смирнова, 2006; Беляченко и др., 2007, 2008). Установлено, что при воздействии МП на покоящиеся или прорастающие семена отмечается воспроизводимый эффект действия МП, заключающийся в повышении уровня митотической активности (МА) апикальных корневых меристем у опытных растений по сравнению с контрольными. Выявленный стимулирующий эффект является основой для разработки перспективной технологии для оптимизации различных биотехнологических процессов, а также целенаправленного воздействия на количественные и качественные признаки растений в сельскохозяйственной практике.