Катаева Н. В., Бутенко Р. Г. Клональное микроразмножение растений. М., 1983. 96 с.

Шипунова А. А. Клональное микроразмножение сортовой вишни // Вестн. Тюмен. гос. с.-х. академии. 2009. № 3 (10). С. 27–31

Коротков О. И., Комарова И. А. Особенности укоренения сортовых групп клематисов в зависимости от их происхождения : материалы IX Региональной конф. молодых исследователей Волгогр. обл. Волгоград, 9–12 ноября 2004 г. Волгоград, 2004. С. 27–28.

Anderson W. S. Mass propagation by tissue culture: principls and techniques // On nursery production of fruit plants through tissue culture-applications and feasibility: Proc. of confer. Maryland, 1980. P. 1–10.

Gamborg O. L., Evelegh D. E. Culture methods and detection of glucanases in cultures of wheat and barley // Can. J. Biochem. 1968. Vol. 46, № 5. P. 417–421.

Lloud G., McCown B. Commercially-feasible micropropagation of mountain laurel, *Kalmia latifolia*, by use of shoot-tip culture // Proc. Intern. Plant Prop. Soc. 1980. Vol. 30, P. 420–427.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. Vol. 15, № 13. P. 473–497.

Nitsch J. P. Experimental androgenesis in Nicotiana // Phytomorphology. 1969. Vol. 19, № 3. P. 389–404.

Quoirin M., Lepoivre P. Improved medium for in vitro culture of Prunus sp. // Acta Hortic. 1977. Vol. 78. P. 437–442.

White P. R. Potentially unlimited growth of excised tomato root tips in a liquid medium // Plant Physiol. 1934. Vol. 9. P. 585–600.

УДК 581.543.6:581.48:631.531(031)

ОСОБЕННОСТИ ПРОРАСТАНИЯ СЕМЯН SALVIA TESQUICOLA KLOK. & POBED В ЛАБОРАТОРНЫХ УСЛОВИЯХ

Т. Ю. Гладилина, И. В. Шилова

Саратовский государственный университет им. Н. Г. Чернышевского Учебно-научный центр «Ботанический сад» 410010, Саратов, ул. Академика Навашина, 1 E-mail: flor1980@mail.ru

Приводятся результаты лабораторных исследований особенностей прорастания семян шалфея сухостепного, собранных с коллекционных растений. Установлено, что семена шалфея сухостепного всходят не энергично, всхо-

жесть семян невысока и сохраняется на уровне 22–24% в течение 6,5 лет. С увеличением срока хранения семян до 8,5 лет их всхожесть снижается до 1%, а в дальнейшем семена теряют способность к прорастанию. После закладки на всхожесть семена начинают прорастать в среднем через 5 дней. Длительность прорастания в среднем составила 6 дней. Оксигенация семян результатов не дала. Холодная стратификация также не улучшает прорастания.

Ключевые слова: шалфей сухостепной, прорастание семян, всхожесть, стратификация.

FEATURES OF SEED GERMINATION OF SALVIA TESQUICOLA KLOK. & POBED IN VITRO

T. J. Gladilina, I. V. Shilova

Results the data of laboratory studies of seed germination characteristics of *Salvia tesquicola*. Seeds was taken from collectional plants. Was found that the seeds germinated very slowly, meaning of germination was low and amounted the 22–24% for seeds from one to 6.5 years storage. With increasing of storage time to 8,5 years the meaning of germination reduced to 1%, and further seeds losed their ability to germinate. Seeds germinated in 5 days. The duration of the germination average was 6 days. Seed treatment by oxygen produced no results. Cold stratification did not improve germination also.

Key words: Salvia tesquicola, seed germination, stratification.

Шалфей сухостепной (Salvia tesquicola Klok.et Pobed.) – многолетнее травянистое растение из семейства Губоцветные (Lamiaceae). Встречается в европейской части России, на Кавказе, в Западной Сибири, в Средней Азии. Растет на песках, в сухих руслах рек, на каменистых обнажениях, по песчаным берегам рек, в степях, арчевниках, оврагах, дубовых лесах. (Флора СССР, 1954). На территории Саратовской области вид распространен повсеместно (Еленевский и др., 2008). Это лекарственное, декоративное, медоносное растение является кормовым для мелкого рогатого скота (Растительные ресурсы, 1991).

Этот вид выращивается в коллекции лекарственных и пряноароматических растений отдела флоры и растительности Учебно-научного центра «Ботанический сад» Саратовского государственного университета им. Н. Г. Чернышевского более 20 лет.

Материал и методика

Объектом исследования послужили семена, собранные с коллекционных растений разных лет урожая. Нами изучались особенности прорастания семян шалфея сухостепного в лабораторных условиях. Семена закладывались в чашки Петри в 2 повторностях по 50 семян в каждой, на увлажненную фильтровальную бумагу в соответствии с общепринятой методикой (Методы, 2007).

Изучались особенности прорастания семян при воздействии следующих факторов: отрицательная (-18 °C) в течение месяца, пониженная (6°C) в течение 2 месяцев температура; оксигенация при помощи 3%-ного раствора перекиси водорода ($\rm H_2O_2$) и 0,01%-ного раствора перманганата калия ($\rm K_2MnO_4$) в течение 3 минут. Контрольная партия семян проращивалась в комнатных условиях на свету при температуре 22–26°C.

Исследовали прорастание семян в зависимости от срока хранения. Ставились следующие задачи: определить всхожесть и энергию прорастания семян, период от момента закладки до начала прорастания, период учета энергии прорастания, продолжительность прорастания семян.

Результаты и их обсуждение

Показатели прорастания семян шалфея сухостепного в зависимости от срока хранения представлены в таблице.

Особенности прорастания семян шалфея сухостепного в лабораторных условиях

Срок хране-	Год урожая	Период до начала прорастания, дни	Продолжительность прорастания, дни	Всхожесть,
0,5	2012	3	1	21
1,5	1996	1	5	5
	2011	2	2	12
2,5	2010	2	7	24
3,5	2007	4	1	12
5,5	2000	4	15	23
6,5	1999	4	11	22
7,5	1998	6	8	9
8,5	2002	15	1	1

Из таблицы видно, что у семян, прораставших в комнатных условиях, период до начала прорастания колебался от 1 до 15 (в среднем 5) дней, более свежие семена прорастали быстрее. Срок учета энергии прорастания определяется средним минимальным количеством дней, в течение которых проросло максимум семян (Фирсова, 1969). В нашем случае период учета энергии и саму энергию, как свежесобранных, так и долго хранившихся семян, прораставших при комнатной температуре, определить нельзя, так как семена прорастали не энергично. Прорастание продолжалось от 1 до 15 (в среднем 6) дней и, как видно из таблицы, не зависело от срока хранения семян.

Показатели всхожести семян при различных сроках хранения варьировали от 1 до 24%, на уровне 22% всхожесть сохранялась до 6,5 лет. Семена со сроком хранения до 7,5 лет сохраняли всхожесть до 9%, а со сроком 8,5 лет – до 1%.

Оксигенация семян шалфея сухостепного результатов не дала.

Холодная стратификация и промораживание не повысили всхожесть, и семена прорастали не энергично.

Выводы

Таким образом, семена шалфея сухостепного способны прорастать как после воздействия отрицательной (-18°C), так и при нормальной (22–26°C) температуре, но всхожесть их невысока. Семена шалфея могут сохранять всхожесть на уровне 22% в течение 6,5 лет, с увеличением срока хранения до 8,5 лет всхожесть падает до 1%. Позже семена теряют способность прорастать. Предварительная стратификации при проращивании практически не повышает всхожесть семян шалфея сухостепного.

Список литературы

Еленевский А. Г., Буланый Ю. И., Радыгина В. И. Конспект флоры Саратовской области. Саратов: Издат. центр «Наука», 2008. 165 с.

Методы интродукционного излучения лекарственных растений: учеб.-метод. пособие для студ. биол. фак. Саратов: Издат. центр «Наука», 2007. 45 с.

Растительные ресурсы СССР: Цветковые растения, их химический состав, использование; Семейства Hippuridaceae – Lobeliaceae. СПб. : Мир и семья, 1991. С. 77.

Победимова Е. Г. Род 1285. Шалфей – Salvia L. // Флора СССР. М. ; Л. : Издво АН СССР, 1954. Т. XXI. С. 244–374.

Фирсова М. К. Семенной контроль. М.: Наука, 1969. 295 с.