СЕЛЬСКОХОЗЯЙСТВЕННАЯ БИОЛОГИЯ

УДК 633.11: 581.4

СТРУКТУРА ЭЛЕМЕНТОВ ПРОДУКТИВНОСТИ ИНТРОГРЕССИВНЫХ СОРТОВ И ЛИНИЙ ЯРОВОЙ МЯГКОЙ ПШЕНИЦЫ САРАТОВСКОЙ СЕЛЕКЦИИ

Н. С. Ильин, Е. Л. Гагаринский, С. А. Степанов

Саратовский государственный университет им. Н. Г. Чернышеского Россия, 410010, Саратов, ул. Астраханская, 83 E-mail: hanin-hariton@yandex.ru

Поступила в редакцию: 11.09.2016 г.

Структура элементов продуктивности интрогрессивных сортов и линий яровой мягкой пшеницы Саратовской селекции. - Ильин Н. С., Гагаринский Е. Л., Степанов С. А. - В течение двух лет, отличающихся по погодным условиям, изучалась структура урожая яровой мягкой пшеницы. Сравнение интрогрессивных сортов и линий с генетически однородными сортами показало их примерное сходство по числу боковых побегов. Длина стебля составляла по годам вегетации растений от 469 до 605 мм, длина колоса - от 63 до 90 мм. Доля колоса от длины побега варьировала от 10.9 до 14.6%. Число колосков колоса в среднем за 2 года изучения составляло от 12.4 до 14.4 шт. Число зерновок в колосе достигало у разных сортов от 16 до 39 шт., число зерновок в колоске колоса – от 1.25 до 2.91шт. Масса зерновки существенно варьировала по годам вегетации растений - от 23 до 35 мг. Интрогрессивные сорта и линии пшеницы саратовской селекции отличаются по сравнению с генетически однородными сортами большей величиной урожая зерна, что наряду с их устойчивостью к патогенам, включая листовую ржавчину, определяется большей длиной стебля, возрастанием числа колосков в отдельные годы, меньшей долей неозерненных колосков, увеличением числа зерновок в колоске колоса.

Ключевые слова: побег, стебель, колос, колосок, зерновка, урожай зерна.

Structure of elements productivity introgression cultivarsand lines of spring soft wheat of the Saratov selection. – Ilyin N. C., Gagarinckiy E. L., Stepanov S. A. – Within two years differing on weather conditions, the structure

Н. С. Ильин, Е. Л. Гагаринский, С. А. Степанов

of a crop of spring soft wheat was studied. Comparison introgression grades and lines with genetically homogeneous grades has shown their approximate similarity on number of lateral shoot. The length of a stalk made on years of vegetation of plants from 469 to 605 mm, length of an ear – from 63 to 90 mm. The share of an ear from length of shoot varied from 10.9 to 14.6 %. The number of cones of an ear on the average for 2 years of studying made from 12.4 to 14.4 pieces. Number caryopsis in an ear reached at different grades from 16 to 39 pieces, number caryopsis in an ear spikelet – from 1.25 to 2.91 pieces. The weight caryopsis essentially varied on years of vegetation of plants – from 23 to 35 mg. Introgression grades and lines of wheat of the Saratov selection differ in comparison with genetically homogeneous grades the big size of a grain yield, that along with their stability to pathogens, including a sheet rust, is defined by high values of length of a stalk, great values of number of spikelets in separate years, a smaller share of spikelets without grain, great values of number caryopsis in an ear spikelet.

Key words: shoot, stalk, ear, spikelet, caryopsis, grain yield.

Пшеница является одним из ведущих продовольственных ресурсов, что определяет интерес к особенностям генезиса её продуктивности. Интрогрессивные сорта и линии, содержащие эффективные гены резистентности, позволяют повысить устойчивость пшеницы к грибным патогенам без снижения продуктивности растений (Леонова, Будашкина, 2016).

В полевых условиях урожайность пшеницы всегда варьирует из года в год, что детерминируется биологическими особенностями сортов, отличием климатических факторов и агротехники. Проведение структурного анализа зрелых растений позволяет оценить особенности погодных и технологических условий в период формирования таких элементов продуктивности как количество боковых побегов, колосков, числа и массы зерновок (Морозова, 1986).

Материал и методы

Исследования проводились на кафедре микробиологии и физиологии растений биологического факультета СГУ и в лаборатории физиологии растений НИИСХ Юго-Востока в период с 2012 по 2013 гг. В качестве объекта были взяты 10 интрогрессивных сортов и линий мягкой яровой пшеницы, созданных в разные годы в отделе генетики и цитологии института: Л 503, Л503 Lr19 + Lr26, Л 505, Л 505 656/11,Белянка, Добрыня, Добрыня Lr19 + Lr37, Фаворит, Воевода, Лебедушка.

Посев производился ручным аппаратом конструкции Одесского селекционно-генетического института в полевых мелкоделяночных опытах пристанционного селекционного севооборота НИИСХ Юго-Востока, повторность опытов трёхкратная. Норма высева 400 семян на $1 \ {\rm M}^2$, принятая в производственных посевах в Саратовской области. Для проведения структурного анализа продуктивности сортов и линий пшеницы в конце вегетации брали по 30 растений из каждой из трёх повторностей, которые затем объединяли в группу из 90 растений и методом случайной выборки отбирали из неё 30 растений (Морозова, 1983). Определение величины $K_{\rm xos}$ осуществляли по В. А. Кумакову (1985). Результаты исследований подвергались статистической обработке в табличном процессоре Excel пакета MS Office 2010.

Результаты и их обсуждение

Основной вклад при принятой норме высева у яровой пшеницы в урожай зерна вносит главный побег, что было отражено в ряде публикаций, включая те из них, которые непосредственно связаны с данным районом исследования физиологии продуктивности пшеницы (Красовская, Кумаков, 1951; Кумаков, 1980, 1985). Однако в зависимости от погодных условий, которые наблюдались в период вегетации растений, и физиологических особенностей сортов часть исследуемых сортов и линий имели некоторое количество боковых побегов, преимущественно продуктивных.

Общее число (продуктивных и непродуктивных) боковых побегов на одно растение в среднем за 2 года изучения составляло от 0.68 (Добрыня lr19 + lr37) до 1.32 (Фаворит) шт., т.е. наблюдалось двукратное различие по данному признаку между данными сортами. В среднем по группе сортов меньшее число боковых побегов к концу вегетации растений отмечено в 2012 г., большее – в 2013 г. Более одного бокового побега на одно растение наблюдалось в 2012 г у 3 из 10 сортов: Л503 (1.26 шт.), Лебедушка (1.13 шт.) и Воевода (1.03 шт.). В 2013 г. менее одного бокового побега на одно растение выявлено только у одной линии пшеницы – Добрыня lr19 + lr37 (табл. 1).

Некоторые интрогрессивные сорта и линии яровой мягкой пшеницы отличались по завершении вегетации в 2013 г. более высокими значениями числа боковых побегов на одно растение: Фаворит (1.73 шт.), Л503 (1.54) и Воевода (1.4 шт.). Размах вариации по числу

боковых побегов за эти годы составлял в среднем 0.44 шт., от минимального значения среди исследуемых сортов и линий у сорта Лебедушка (0.03 шт.) до максимального значения у линии Л 503 lr19+lr26 (табл. 1).

Таблица 1 Общее число боковых побегов на одно растение интрогрессивных сортов и линий яровой мягкой пшеницы, шт.

Сорта	Годы вегетации растений		Среднее	Размах
	2012	2013	Среднее	вариации
Л 503	1.26 ± 0.06	1.10 ± 0.06	1.18	0.16
Л 503 lr19+ lr26	0.50 ± 0.03	1.37 ± 0.07	0.94	0.87
Л 505	0.76 ± 0.04	1.54 ± 0.08	1.15	0.78
Л505 656/11	0.83 ± 0.04	1.03 ± 0.05	0.93	0.20
Белянка	0.67 ± 0.03	1.16 ± 0.06	0.92	0.49
Добрыня	0.64 ± 0.03	1.00 ± 0.05	0.82	0.36
Добрыня lr 19 + lr 37	0.86 ± 0.04	0.50 ± 0.03	0.68	0.36
Фаворит	0.90 ± 0.05	1.73 ± 0.09	1.32	0.83
Воевода	1.03 ± 0.05	1.40 ± 0.07	1.22	0.37
Лебедушка	1.13 ± 0.06	1.10 ± 0.06	1.12	0.03
Среднее	0.86	1.19	1.03	0.44
HCP 0,95	0.11	0.12	_	_

Сравнение интрогрессивных сортов и линий с генетически однородными, за некоторым исключением, сортами, используемыми в эти же годы В. Д. Сигнаевским (2014), показало их примерное сходство по данному признаку. В частности, по данным В. Д. Сигнаевского (2014), общее число боковых побегов составляло среди изучаемых им 33 сортов: 2012 г. — от 0.37 (Прохоровка) до 1.8 (Полтавка) шт.; 2013 г. — от 1.0 (Ершовкая 32, ЮВ—2) до 1.87 (Саратовская 73).

Урожай зерна в среднем за 2 года изучения достигал от 2.71 (Л505) до 3.69 (Белянка) т/га. Урожай зерна менее 3 т/га в 2012 г. отмечен только у одного сорта Л503, тогда как в 2013 г. у большинства сортов и линий, кроме Воеводы, Лебедушка и Л505 656/11, соответственно 3.56, 3.16 и 3.16 т/га. Урожай более 4 т/га выявлен в 2012 г. у 2 из 10 сортов и линий — Белянка (4.46 т/га) и Л 503 lr19 + lr26 (4.41 т/га). Размах вариации по урожаю зерна за эти годы составлял в среднем 0.72 т/га, от минимального значения среди исследуемых сор-

тов и линий у Л505 656/11(0.02 т/га) до максимального значения у линии Л 503 lr19 + lr26 (2.57 т/га).

Сравнение по величине урожая зерна интрогрессивных сортов и линий с генетически однородными, за небольшим исключением, сортами (Сигнаевский, 2014), показало превосходство интрогрессивных сортов и линий. В частности, у 33 сортов, взятых для изучения В. Д. Сигнаевским (2014), урожай зерна в 2012 г. составлял от 2.36 (Полтавка) до 4.38 (Прохоровка) т/га. Однако у 16 сортов его значения достигали от 2.36 до 2.96 (ЮВ-2) т/га, тогда как у интрогрессивных сортов и линий величина урожая была более 3.0 т/га, за исключением Л 503 (2.78 т/га), а у 2 сортов более 4.0 т/га. В 2013 году 8 из 33 сортов, изучаемых В. Д. Сигнаевским (2014), имели урожай зерна менее 2 т/га, тогда как в наших исследованиях аналогичное значение величины урожая зерна наблюдалось только у линии Л 503 lr19 + lr26 (1.84 т/га).Одной из причин подобного превосходства является большая устойчивость взятых нами сортов и линий к патогенам, в т.ч. листовой ржавчине.

В генезисе урожая пшеницы каждого из сортов, кроме ассимиляционных процессов в листьях, важную роль играет стебель, осуществляя транспорт воды, минеральных и органических веществ, обеспечивая целостность растения посредством интеграции гормональных и электрофизиологических сигналов, а также выступая в качестве депонирующей структуры при избытке ассимилятов фотосинтеза. Кроме того, стебель также участвует в образовании продуктов фотосинтеза. В неблагоприятных условиях для вегетации растений в стебле может наблюдаться явление лизиса паренхимных клеток с последующим оттоком образующихся продуктов в формирующиеся зерновки.

Среди исследуемых интрогрессивных сортов и линий яровой мягкой пшеницы длина стебля составляла по годам вегетации растений: в 2012 г. – от 469 (Л 503 lr19 + lr26, Л 505) до 583 (Воевода) мм; в 2013 г. – от 514 (Л 505) до 605 (Воевода) мм. В среднем за эти годы минимальное значение длины стебля наблюдалось у Л 505 (491 мм), максимальное – у сорта Воевода (594 мм). Размах вариации средней длины стебля составляет от 14 (Л 503) до 90 (Белянка) мм.

Как показал сравнительный анализ (Сигнаевский, 2014), для основной части интрогрессивных сортов и линий характерна большая длина стебля. Примечательно, что в 2013 г. 2 сорта из 10 имели длину

стебля более 600 мм, что не наблюдалось ранее в отношении генетически однородных сортов в работе В. Д. Сигнаевского (2014).

Длина колоса интрогрессивных сортов и линий яровой мягкой пшеницы в среднем за 2 года вегетации растений достигала от 68 (Л 505, Добрыня) до 84 (Лебедушка) мм. В среднем по группе сортов и линий несколько меньшая длина колоса побега отмечена в 2012 г. (74 мм), большая — в 2013 г. (78 мм). Адекватно этому наблюдалось значительное различие сортов по длине колоса в эти годы: в 2012 г. — от 63 (Добрыня) до 80 (Фаворит) мм; в 2013 г. — от 66 (Л 505) до 90 (Лебедушка) мм. Размах варьирования длины колоса составлял от 3 (Л 505) до 11 (Лебедушка) мм. Относительно генетически однородных сортов (Сигнаевский, 2014) интрогрессивные сорта и линии отличаются, как правило, более длинным колосом.

Среди исследуемых интрогрессивных сортов и линий яровой мягкой пшеницы доля колоса достигала: в 2012 г. — от 11% (Л 503, Л505 656/11, Добрыня) до 14.6% (Л 503 lr19 + lr26); в 2013 г. — от 10.9% (Л505 656/11) до 13.4% (Лебёдушка). Средние значения доли колоса в периоды вегетации растений 2012 и 2013 гг. варьировали в пределах от 10.9% (Л505 656/11) до 13.1% (Л 503 lr19 + lr26, Белянка). Размах варьирования доли колоса от длины побега за эти годы составлял от 0.1% (Л505 656/11, Фаворит) до 3.0% (Л 503 lr19 + lr26). По сравнению с генетически однородными сортами интрогрессивные сорта и линии преимущественно имеют меньшие значения доли колоса относительно длины побега (Сигнаевский, 2014).

Как известно, большая доля колоса сопряжена с большей величиной акцепторной нагрузки в системе донорно-акцепторных отношений побега растений, способствуя более эффективному использованию ассимилятов фотосинтеза, воды и минеральных ресурсов (Мокроносов, 1981). На основании проведённых исследований можно констатировать, что среди интрогрессивных сортов и линий яровой мягкой пшеницы саратовской селекции 1/2 часть, 5 сортов из 10, имели колос, доля которого от длины побега в среднем за эти годы составляла от 12.0 до 13.1% — Воевода, Л 505, Фаворит, Лебедушка, Л 503 lr19 + lr26.

Число колосков колоса интрогрессивных сортов и линий яровой мягкой пшеницы в среднем за 2 года изучения составляло от 12.4 шт. (Л505 656/11) до 14.4 шт. (Воевода). В среднем по группе сортов и линий меньшее число колосков колоса к концу вегетации растений отме-

чено в 2012 г., большее — в 2013 г. В 2013 г. у 8 из 10 сортов и линий пшеницы число колосков колоса было больше 13,0 шт., а у некоторых из них достигало более 15-и шт.: Добрыня lr19 + lr37, Воевода и Фаворит. Размах вариации по числу колосков колоса за эти годы составлял в среднем 1.7 шт., от минимального значения среди исследуемых сортов и линий у сорта Π 505 (0.3 шт.) до максимального — у сорта Добрыня (табл. 2).

Таблица 2 Число колосков колоса интрогрессивных сортов и линий яровой мягкой пшеницы, шт.

Conmo	Годы вегетации растений		Среднее	Размах вариа-
Сорта	2012	2013	Среднее	ции
Л 503	11.4 ± 0.57	13.8 ± 0.69	12.6	2.4
Л 503 lr 19 + lr 26	13.4 ± 0.67	12.7 ± 0.64	13.1	0.7
Л 505	13.0 ± 0.65	13.3 ± 0.66	13.2	0.3
Л505 656/11	12.0 ± 0.60	12.9 ± 0.65	12.4	0.9
Белянка	14.5 ± 0.73	13.3 ± 0.67	13.9	1.2
Добрыня	11.5 ± 0.58	14.4 ± 0.72	12.9	2.9
Добрыня $lr19 + lr37$	13.4 ± 0.67	15.2 ± 0.76	14.3	1.2
Фаворит	13.0 ± 0.65	15.7 ± 0.78	14.3	2.7
Воевода	13.4 ± 0.67	15.5 ± 0.78	14.4	2.1
Лебедушка	12.2 ± 0.61	14.9 ± 0.75	13.6	2.7
Среднее	12.8	14.2	13.5	1.7
HCP _{0.95}	0.27	0.46	_	_

Как показал сравнительный анализ (Сигнаевский, 2014), в отдельные годы интрогрессивные сорта и линии отличаются большим числом колосков колоса по сравнению с генетически однородными сортами.

По годам исследования наблюдались существенные различия сортов и линий по числу неозерненных колосков, что являлось следствием неблагоприятных условий в период цветения и формирования зерновок. В разные годы вегетации доля неозерненных колосков составляла: в 2012 г. — от 4% (Л 503 lr19 + lr26) до 14% (Л 505); в 2013 г. — от 15% (Воевода) до 48% (Л 503 lr19 + lr26). В среднем за эти годы доля неозерненных колосков достигала от 11% (Воевода) до 26% (Л 503 lr19 + lr26). Размах варьирования наблюдался от 8% (Воевода) до 44% (Л 503 lr19 + lr26). Интрогрессивным сортам и линиям пшеницы свойственно

меньшее число неозерненных колосков колоса относительно генетически однородных сортов. В частности, в условиях 2012 г. доля сортов и линий с числом неозерненных колосков 8% и более составляла 20%, тогда как у генетически однородных сортов -67%. Подобная же тенденция отмечалась и в 2013 г. (Сигнаевский, 2014).

Как показано во многих исследованиях по физиологии продукционного процесса у яровой пшеницы (Кумаков, 1980,1985), в условиях неблагоприятного по влагообеспеченности года, когда засушливый период приходится на момент цветения и формирования зародыша зерновки, наблюдается существенное смещение в сторону увеличения большего числа неозерненных колосков.

Число зерновок в колосе интрогрессивных сортов и линий яровой мягкой пшеницы саратовской селекции также существенно варьировало по годам вегетации: в 2012 г. — от 21 (Л 503) до 39 (Л 503 lr19 + lr26); в 2013 г. — от 16 (Л 503 lr19 + lr26) до 30 (Воевода). В среднем за периоды вегетации 2012 — 2013 гг. число зерновок в колосе составляло от 21.0 (Л 503) до 29.5 (Добрыня lr19 + lr37). Большее число зерновок в колосе наблюдалось в период вегетации 2012 г.; у 4 из 10 сортов и линий их число достигало 30.0 шт. и более — Лебедушка, Белянка, Добрыня lr19 + lr37, Л 503 lr19+lr26. Размах вариации между средними значениями числа зерновок в колосе по годам вегетации растений составлял от 0 (Л 503, Л 505) до 23.0 (Л 503 lr19 + lr26) шт.

Интрогрессивным сортам и линиям пшеницы свойственно большее число зерновок в колосе относительно генетически однородных сортов. В частности, в условиях 2012 г. доля сортов и линий с числом зерновок 30 шт. и более составляла 40%, тогда как у генетически однородных сортов 6%. Подобная же тенденция отмечалась и в 2013 г. (Сигнаевский, 2014).

Количество зерновок в колосе в основном определяется длиной колоса, существенно различающейся, как отмечено выше, между сортами; но зависит также от плотности колоса и числа зерновок в колоске (Васильчук, 2001). Их возможное число регулируется скоростью деления и дифференциации клеток в момент формирования цветков соцветия, а также межметамерными взаимосвязями между колосками колоса (Коновалов, 1974).

Число зерновок в колоске колоса по годам вегетации растений достигало: в 2012 г. – от 1.84 (Л 503) до 2.91 (Л 503 lr19 + lr26); в

2013 г. — от 1.25 (Л 503 lr19 + lr26) до 1.93 (Воевода). Большее число зерновок в колоске колоса наблюдалось у большинства сортов и линий в 2012 г. В среднем за периоды вегетации растений 2012 — 2013 гг. число зерновок в колоске колоса составляло от 1.66 (Л 503) до 2.17 (Лебёдушка). Число зерновок в колоске колоса от 2.0 шт. и более отмечено у 6 сортов из 10. Меньшее их количество свойственно сортам Л 503, Фаворит, Л 505 и Добрыня. Размах варьирования между значениями числа колосков колоса за периоды вегетации растений в 2012 и 2013 гг. достигал от 0.03 (Л 505) до 1.66 (Л 503 lr19 + lr26) шт. (табл. 3).

Таблица 3 Число зерновок в колоске колоса интрогрессивных сортов и линий яровой мягкой пшеницы, шт.

Сорта	Годы вегетации растений		Среднее	Размах
	2012	2013	Среднее	вариации
Л 503	1.84 ± 0.09	1.48 ± 0.07	1.66	0.36
Л 503 lr 19 + lr 26	2.91 ± 0.15	1.25 ± 0.06	2.08	1.66
Л 505	1.92 ± 0.10	1.89 ± 0.09	1.91	0.03
Л505 656/11	2.42 ± 0.12	1.61 ± 0.08	2.02	0.81
Белянка	2.21 ± 0.11	1.90 ± 0.10	2.06	0.31
Добрыня	2.09 ± 0.10	1.86 ± 0.09	1.98	0.23
Добрыня lr 19 + lr 37	2.39 ± 0.12	1.77 ± 0.09	2.08	0.62
Фаворит	2.15 ± 0.11	1.51 ± 0.08	1.83	0.64
Воевода	2.09 ± 0.10	1.93 ± 0.10	2.01	0.16
Лебедушка	2.46 ± 0.12	1.87 ± 0.09	2.17	0.59
Среднее	2.25	1.71	1.98	0.54
HCP _{0.95}	0.09	0.06	_	_

Интрогрессивным сортам и линиям пшеницы свойственно большее число зерновок в колоске колоса относительно генетически однородных сортов. В частности, в условиях 2012 г. доля сортов и линий с числом зерновок в колоске 2 шт. и более составляла 80%, тогда как у генетически однородных сортов — 45%. Подобная же тенденция, но с менее выраженным различием, отмечалась и в 2013 г. (Сигнаевский, 2014).

Как показали проведенные исследования, масса зерновки также существенно варьировала по годам вегетации растений: в 2012 г. – от 26 (Добрыня lr19 + lr37) до 34 (Белянка) мг; в 2013 г. – от 23 (Фаворит)

до 35.0 (Л505 656/11) мг. В среднем по группе сортов и линий большая масса зерновки отмечена у растений, вегетирующих в условиях 2012 г. Причём, масса зерновки 30 мг и более наблюдалась у 5-и из 10-и сортов и линий пшеницы: Фаворит, Л 505, Л 503, Добрыня, Белянка. В среднем за период вегетации 2012 — 2013 гг. масса зерновок в колосе составляла от 26 (Добрыня lr19 + lr37) до 32 (Л 503 и Л505 656/11) мг. Размах вариации между средними значениями массы зерновок по годам вегетации достигал от 0 (Добрыня lr19 + lr37, Лебёдушка) до 7 (Л505 656/11, Добрыня и Фаворит) мг.

Интрогрессивным сортам и линиям пшеницы саратовской селекции не свойственно отличие по массе зерновки относительно генетически однородных сортов. Наоборот, в отдельные годы масса зерновки может быть меньше относительно другой группы сортов (Сигнаевский, 2014).

Как известно, наряду с генотипическими особенностями, определяю-щими величину массы зерновки, существенное влияние оказывают погодные условия в период налива зерна, площадь флагового листа, сбалансированность донорно-акцепторных отношений (Мокроносов, 1981; Кумаков, 1985).

Одним из главных резервов селекции на ближайшую перспективу рассматривается повышение $K_{\text{хоз}}$ (Кумаков, 1985). Увеличить долю выхода зерна от биомассы растений можно различными способами. Эти способы отличны друг от друга, прежде всего, по внутренней физиологической природе. На пройденном этапе селекции яровой пшеницы в Саратове (Гагаринский и др, 2015) рост $K_{\text{хоз}}$ был связан с развитием признаков, обеспечивающих большее накопление биомассы в период налива зерна: увеличением размеров верхних листьев, продолжительности их жизни, возрастанием доли ФП растений, приходящейся на период налива зерна.

Для исследуемых нами интрогрессивных сортов и линий яровой мягкой пшеницы саратовской селекции величина $K_{\rm xo3}$ по годам вегетации составляла: в 2012 г. – от 39.6 (Добрыня lr19+lr37) до 50.0 (Белянка) %; в 2013 г. – от 25.3 (Л 503 lr19+lr26) до 38.0 (Л 505) %. В среднем за периоды вегетации растений в 2012 – 2013 гг. величина $K_{\rm xo3}$ достигала от 33.40 (Добрыня lr19+lr37, Фаворит) до 40.1 (Белянка) (табл. 4).

Таблица 4 Коэффициент хозяйственной эффективности фотосинтеза интрогрессивных сортов и линий яровой мягкой пшеницы, %

Сорта	Годы вегетации растений		Сполио	Размах вариа-
	2012	2013	Среднее	ции
Л 503	44.5	28.1	36.3	16.4
Л 503 lr 19 + lr 26	49.8	25.3	37.5	24.5
Л 505	41.0	38.0	39.5	3.0
Л505 656/11	40.9	30.7	35.8	10.2
Белянка	50.0	30.2	40.1	19.8
Добрыня	45.7	30.7	38.2	15.0
Добрыня lr 19 + lr 37	39.6	27.3	33.4	12.3
Фаворит	41.2	25.6	33.4	15.6
Воевода	42.4	33.0	37.7	9.4
Лебедушка	41.6	29.3	35.4	12.3
Среднее	43.7	29.8	36.7	13.8

Как следует из данных по величине K_{xo3} , по годам вегетации может наблюдаться его существенное варьирование, что отражает влияние прежде всего внешних экологических факторов (температуры, наличия влаги) на фоне генотипических особенностей донорноакцепторных отношений в период формирования элементов продуктивности колоса (Левицкая и др., 2009). В частности, размах вариации между средними значениями K_{xo3} по итогам вегетации в 2012-2013 гг. достигал от 3.0 (Л 505) до 24.5 (Л $503\ lr19+lr26$)% (см. табл.4). Сравнение интрогрессивных сортов и линий с генетически однородными, за небольшим исключением, сортами саратовской селекции, по величине K_{xo3} (Сигнаевский, 2014) показало превосходство интрогрессивных сортов и линий в отдельные годы.

Таким образом, можно заключить, что интрогрессивные сорта и линии пшеницы саратовской селекции по сравнению с генетически однородными сортами характеризуются большей величиной урожая зерна, что наряду с их высокой устойчивостью к патогенам, включая листовую ржавчину, определяется возрастающей длиной стебля, увеличением числа колосков в отдельные годы, меньшей долей неозерненных колосков, большим числом зерновок в колоске колоса.

Список литературы

Васильчук Н. С. Селекция яровой твердой пшеницы. Саратов, 2001. 123 с.

Н. С. Ильин, Е. Л. Гагаринский, С. А. Степанов

Гагаринский Е. Л., Степанов С. А., Сигнаевский В. Д. Микроэволюция элементов продуктивности побега яровой мягкой пшеницы саратовской селекции // Бюл. Бот. сада Сарат. гос. ун-та. 2015. № 13. С. 171 – 181.

Коновалов Ю. Б. Взаимовлияние зерновок в наливающемся колосе как следствие их аттрагирующей способности // Изв. ТСХА. М., 1974. Вып. 4. С. 63-76.

*Красовская И. В., Кумаков В. А.*Взаимоотношения главного и боковых побегов яровой пшеницы // Тр. ИФР им. К. А. Тимирязева. 1951. Т. VII, вып. 2. С. 193-211.

Кумаков В. А. Физиологическое обоснование моделей сортов пшеницы. М.: Агропромиздат, 1985. 270 с.

Кумаков В. А. Физиология яровой пшеницы. М.: Колос, 1980. 207 с.

Левицкая Н. Г., Шаталова О. В., Иванова Г. Ф. Обзор средних и экстремальных характеристик климата Саратовской области во второй половине XX – начале XXI века // Аграрный вестник Юго-Востока. 2009. № 1. С. 30 - 34.

Леонова И. Н., Будашкина Е. Б. Изучение признаков продуктивности у интрогрессивных линий *Triticum aestivum/Triticum timopheevii*, устойчивых к грибным болезням // Вавиловский журнал генетики и селекции. 2016. Т. 20, №3. С. 311 – 319.

Мокроносов А. Т. Онтогенетический аспект фотосинтеза. М.: Наука, 1981. 195 с.

Морозова 3. А. Морфогенетический анализ в селекции пшеницы. М.: Издво МГУ. 1983. 77 с.

Морозова 3. А. Основные закономерности морфогенеза пшеницы и их значение для селекции. М.: МГУ, 1986. 164 с.

Сигнаевский В. Д. Морфогенетические аспекты продуктивности яровой мягкой пшеницы сортов саратовской селекции: автореф. дис. ... канд. биол. наук. Саратов, 2014. 20 с.